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The cation distribution at some equilibrium temperature in ferrimagnetic spinels can be 
inferred provided the contributions to the cationic site energies are established. In some 
compounds, e.g. magnesioferrite, the distribution is strongly dependent on temperature. 
This is explained by taking into account suitable thermal energy terms in addition to 
electrostatic or crystal-field octahedral stabilisations. The Fe30,/Mg 8Fe3-~O,_(8_,)/2 system 
is considered and the temperature-dependence in magnesioferrite is discussed. A 
comparison is made of the theoretical derivation with several experimental data. 

1, Introduction 
Experimental and theoretical investigations have 
been carried out by several authors [1-5] on the 
influence of quenching temperatures on the 
cation distribution of ferrimagnetic spinels. In 
fact, some spinel substances, e.g. Cu2+Fe23+O4, 
Mg 8 2+ Fe 3+ ~_ aO4_ (8- ~)I 3, Mg~+Nil - ~+ F%3+O4, 
Ni2+AI~a+F%_~3+O,, etc, are sensitive to their 
thermal history. The distribution of cations 
among different oxygen co-ordination lattice 
sites in equilibrium conditions is due to the 
magnitude of the cation energies in each of the 
permissible sublattices, the tetrahedral and the 
octahedral one. 

If  N~el's hypothesis of antiparallel alignment 
between spins of the paramagnetic cations in 
opposite lattice sites is made, saturation magneti- 
sation data at low temperatures are sometimes 
successfully used to infer the cation distribution 
[6]. Such data are not alone sufficient to deter- 
mine the distribution without further assump- 
tions; if the spinel unit formula contains several 
paramagnetic cation species or contains para- 
magnetic cations whose spectroscopic g-factors 
in one or both sublattices are unknown, and/or 
the formula contains a very high diamagnetic 
cation concentration which is responsible for a 
weakening of the antiferromagnetic super- 
exchange linkages. The first and the third of the 
above obstacles can be overcome, with suitable 
assumptions. 

A recent investigation [7] on thermodynamic 
5O 

equilibrium conditions in ferrimagnetic crystals 
containing any number of co-ordination sub- 
lattices and cation species led to the determina- 
tion of the cation distribution, provided the 
magnitudes of the sublattice cationic energies are 
known. However, the equilibrium equations do 
not include explicitly temperature-dependent 
energy terms. 

It is the purpose of this paper to investigate to 
what degree the cationic energies are relevant to 
provide a satisfactory picture of the temperature- 
dependence of the distribution in some simple 
ferrimagnetic system. By so doing, we wish to 
extend the results of the previous treatment to a 
special interesting case. 

In order to correlate the mentioned deriva- 
tions with the present approach, we choose to 
study the solid solution Mg~e 2+ Fel_ 2+ 
Fe2_ (~_ m 3+ O4- (8- ~)~/~, one of whose end com- 
positions is the well-known temperature-sensitive 
magnesium ferrite Mg82+ Fe3_8 a+ O4-(8-~)/2. 
Special emphasis is given to this composition, 
which is written in a nonstoichiometric form 
owing to different conclusions drawn by several 
workers [6, 8, 9]: we thus assume that 3 is a 
suitable number, 1.0 <_ 3 _< 1.3. 

2. Equilibrium Equations 
Fe304 is known to be a completely inverted 
spinel, while magnesioferrite is nearly inverted 
when quenched at low equilibrium tempera- 
tures and nearly random when quenched at 
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very high equilibrium temperatures. 
By enclosing with round brackets the tetra- 

hedral, and with square brackets the octahedral 
cations in the spinel formula, the solid solution 
composition can be written: 

(Mg~ ~+ F% ~+ F%_ ~ ~_ 3+) [Mg(~_~) s 2+ 
Fe 1- t-  y~+ F%~ t + ~- (t- ~) 8+ ] O 4- ( ~- 1)~/2 

0 _< t <_ 1. (1) 

x and y are the tetrahedral fractions per formula 
of Mg 2+ and Fe z+, respectively. The equilibrium 
conditions with respect to cation transfer among 
the octahedral and tetrahedral sublattices are: 

(1 - -  x 3  - -  y ) / x ~  ~- D[1 -}- t -~  y - -  ( t  - -  x)31/ 
( t  - x ) ~  

(1 - -  x 3  - -  y ) / y  = E [ 1  + t + y - -  ( t  - -  x ) 3 ] /  

(1 - -  t - -  y )  ( 2 )  

T I = T 2 ,  P l = P 2  ; 

where 
D = exp[(eMg (I) - -  eMg (2)) --@Ve ~+0) -- eFe~+(2))]/ 

kT 
E----- exp [(EFe~+ (I) - -  ~Fe ~+ (2)) __ (EFe,+(1) __ ffF6~+(2)) I 

k/T. (3) 
T and p are temperatures and pressures, k is the 
Boltzmann constant, subscripts and superscripts 
1 and 2 refer to quantities related to the tetra- 
hedral and octahedral sites, respectively. The e's 
are the energies associated with the indicated 
cations and sublattices. 

A first approximation is made by setting 
eFe~+(1) = EFea+ (2), which results from crystal-field 
theory considerations [10, 111. D and E retain 
hereafter such modified meanings. The solution 
of equations 2 will provide x and y as functions 
of  t, the solid solution parameter. An approxi- 
mate solution is given by* 

x = [2E § (1 --  i~)t]~t/[(2D + At) 
(2E + 1 - - /x t )  + (1 - -  t)~t] 

y = [2D + (A --  ~)t] (1 - -  t)/[(ZD § At) 
(2E -F 1 - - / x t )  4- (1 - -  t)St] (4) 

with )t == S - -  D(3 - - 1 )  , /~ = 1 + E ( 3 - - 1 ) .  

Equations 4 would be greatly simplified if the 
solid solution range were between FeaO~ and a 
stoichiometric MgFezO~. The following expres- 
sions would then be obtained: 

x = Et /[E(2D + t) § D (1 --  01 ,  
y----- D(1 - - t ) / [ E ( 2 D - } - t ) + D ( 1  - t ) J ! .  (4') 

*For a similar derivation, see Appendix II of reference 7. 

The two end compositions have the distributions 

y = ( 2 E + l )  -1,  F%O~ (5) 

x - - - - ( y D + l )  -1 , Mg~Fea_~O4_(e_l)/2 (6) 

with y = (3 - -  ~)/3. 

3. Site Stabilisation and Vibrational 
Energies 

Taking advantage of the fact that for the end 
compositions x and y depend respectively on D 
and E only, it will be suitable to analyse these 
two spinels. 
Fe30~ : with the above outlined approximation, 
E ~ exp [(EFe'-+(1) --ere=A2))/kT]. We assume 
that the octahedral stabilisation energy of a Fe ~+ 
ion is of  the order of 9 kcal/g a tom [12]; at 
the high solid state reaction temperature of 
about 1500 ~ K this provides the value E_~ 20 and 
consequently, y _~ 0.025. 

The rather high octahedral stabilisation 
energy of Fe 2+ allows us to disregard, in first 
approximation, the small thermal contribution. 
By indicating with S(Fe a+) = 5/2, S(Fe 2+) = 2 
the spin angular momentum quantum numbers 
and by g(1)(Fe2+), g(2)(Fe z+) and g(Fe 3+) = 2.00 
the spectroscopic splitting factors of  the iron 
ions, the magnetisation in Bohr magnetons per 
formula at 0 ~ K is: 

m3=lOy+2[g(2)(Fe2+)(1--y)--g(1)(Fe2+)yl. (7) 

Also the relation gef~ ( 2 + y ) - =  nB holds. We 
assume the value geff = 2.06, as found by Bick- 
ford [131 by means of ferromagnetic resonance 
measurements at 120 ~ K. 

The g(2) (Fe2+) value cannot be much different, 
owing to the almost inverse distribution of 
Fe304: by setting g(~/(Fe2+) = 2.1, we obtain 
g(1) (Fe2+) = 4.0 and nB = 4.1, in agreement 
with experimental measurements [141. It  is well 
known [15] that F%O4 has a first-order ortho- 
rhombic ~ cubic transition at 119 ~ K:  in what 
follows we shall neglect its implications as far as 
ferrimagnetic effects are concerned, thus consid- 
ering the nB values below 119 ~ K as extrapolated 
from the spinel phase magnetic moments. 
Mg ~ Fe~_ s O~_ (~_ ~)/2t : the temperature-inde- 
pendent octahedral stabilisation energy of a 
Mg z+ ion is of the order [16] of 3 kcal/g atom. 
Considering the limiting value at low quenching 
temperatures given by Epstein and Frackiewicz 
[2], we assume Ae -~ 3.15 kcal/g atom. It  is now 

tit is our purpose to avoid further consideration on the nature of nonstoichiometry of the spinel, i.e. whether the latter 
has to be ascribed to interstitial Mg ~+ [17] or oxygen deficiency. With the adopted formulae we follow the second 
approach, although both models deserve consideration. 
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necessary to rewrite D in the more convenient 
form: 

O = exp {[(�9 (1) -~- �9 - -  

(enon_th (~) -! �9 (8) 

All quantities are referred to Mg-ions : the 
�9 non-th terms are the non-thermal, mainly 
electrostatic negative energies, while the �9 
terms are the vibrational positive energies per 
cation in tetrahedral and octahedral sublattices. 
At this point it seems natural to consider the 
�9 th'S as Debye energies related to Mg ~+ in each 
sublattice. Owing to the relatively high quench 
temperatures of experimental interest and in 
order to deal with simple algebra, we set: 

etn(i) ~ 3kOE(0/[exp (OE(O/T)  - -  1] / i =  1, 2 (9) 

secluding the zero-point energy amidst the non- 
thermal contributions and thus assuming the 
Einstein approximation for the thermal energy. 

The difference between thermal energies, even 
at high temperatures, does not exceed a few 
kcal/g atom, but it may be a relevant contribu- 
tion when the electrostatic and other non-thermal 
energy differences A �9 are small, as in the present 
case. 

In the previous FezO4 case, the contribution of 
the stabilisation energy is much larger, so that 
we may disregard the thermal contributions. 

In MgO, with NaCI structure, the Mg-ions 
are octahedrally co-ordinated with a cation- 
anion distance of  2. i0 A [I 8]. In the magnesium 
ferrite, the octahedrally co-ordinated Mg-ions 
are 2.05 A apart, the tetrahedrally co-ordinated 
ones 1.90 A_ apart from the anions with the 
average lattice parameter a0 - -8 .39  A and 
u -~ 0.381 [19]. The Debye temperature of MgO 
is OD = 772 ~ K [201. On the basis of the above 
data, taking into account the considerable empti- 
ness of the spinel unit cell* and the rather small 
cation-anion tetrahedral distance, the following 
crude assumptions are made: the vibrational 
energy associated with an Mg 2+ ion in a octa- 
hedral site is given by 9 with OE(~) = 600 ~ K, 
that in a tetrahedral site is given by 9 with 
OEo) --- 1500 ~ K. 

It is worth noting that the chosen temperatures 
are within reasonable ranges of the magnitudes 
found on oxide materials. Summarising, the 
cation distribution, when t = 1, is given by: 

x ( T )  = {y exp [[A e -- 3k OE(2)(exp OE(Z) /T - -  1)-1 
+ 3 k O E ( 1 ) ( e x p O ~ O ) / T - -  1)-l]/kT] + 1} -1 (10) 

where A �9 is the non-thermal octahedral stabilisa- 
tion energy. 

From the above derivation it follows that 

lira x = O' + 1) -1: at high temperatures, x will T ----~ co 
be larger, the larger 3 is (nonstoichiometry), as 
confirmed by comparison between the experi- 
mental measurements of references 1, 2 and 5. 

In fig. 1 a comparison is made between the 
cation distribution curve drawn from equation 10 
with 3 = 1.06 and several experimental measure- 
ments from the literature; also plotted are: the 
curve obtained from Pauthenet and Bochirol's 
[23] expression t and that obtained from 
Epstein and Frackiewicz [2]. It is seen that while 
Pauthenet and Bochirol's curve has the lower 
values at high temperatures, Epstein and 
Frackiewicz's curve approaches Kriessman and 
Harrison's experimental magnetic measurements 
on MgF%O4 and the curve of this work ap- 
proaches Mozzi and Paladino's X-ray and 
magnetisation experimental data on Mg~.96 
Fel.94 03.97. 

4. Discussion 
Several authors [1, 2, 4, 5] have found good 
agreement between experimental fractional tetra- 
hedral Mg 2+ ions, x ,  versus quenching tempera- 
tures, T, and the theoretical distribution 
equation: 

(1 - -  x~)  (1 - -  x ) / x [ 2  - -  (1 - -  x)~] = 
exp [(O o -- x O 1 ) / 3 T ]  (11) 

where O0 and 01 are suitable constants having a 
temperature dimension. The numerator of the 
argument in the right-hand side of equation 11 
clearly shows a dependence of the energy on the 
distribution parameter x itself. 

Equation 11 represents a particular case of a 
detailed treatment of the statistical thermo- 
dynamics underlying the distribution of cations 
over the tetrahedral and octahedral sites in a 
ternary spinel, developed by Callen, Harrison 
and Kriessman [24] several years ago. By 
considering the different contributions to the 
energy these authors indicated the Madelung 
energy as the most important non-thermal one. 

*Anderson quotes for MgO, 0D = 930 ~ K; furthermore that O~ in spinel MgAlzO4 is less than 
OD in MgO and in AlcOa [21 ]. 
~In their equation, Pauthenet and Bochirol assumed a constant value of the stabilisation energy. See the discussion 
below. 
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F i Figure 1 Tetrahedralfraction of Mg-ions versus quenching temperature in Mg# ez_~O4_(#_l) ~. Curve 1: theoretical, 
from this work; curve 2: theoretical, from Pauthenet and Bochirol [23]; curve 3: theoretical, from Epstein and 
Frackiewicz I-2]; I: experimental, X-ray, Mozzi and Paladino [5]; O: experimental, saturation magnetisation, Mozzi 
and Paladino [5]; ~ :  experimental, Kriessman and Harrison [1]; A : experimental, Blasse [22]. 

The thermal contributions were approximated 
to the high temperature, equipartition limit of the 
Debye vibrational spectrum and subsequently 
neglected in the works of references 1, 2, 4 and 5. 
In an earlier study [25] Verwey, de Boer and van 
Santen derived a numerical expression of the 
Madelung energy in a spinel structure as a 
function of the average cationic charge in the 
tetrahedral sites for variable magnitudes of the 
oxygen-parameter, u. The Madelung energy is 
seen to change appreciably (also by more than 
7%) (when the tetrahedral site charge varies 
strongly) and for certain values of u. In the 
magnesioferrite case, though, the tetrahedral 
charge varies from 4- 2.9 when x = 0.1 to -1- 2.7 
when x ~ 0.3, and the oxygen-parameter re- 
mains constant, u == 0.381 [5]; it can be seen 
that in these conditions the Madelung energy 
difference is very small, of the order of 0.2 9/00 . 

Not  even the small variation of the lattice 
parameter from 8.385 A_ for x = 0.12 to 8.398 A 
for x = 0.28, as reported by Mozzi and Paladino 
[5], can give rise to an appreciable influence on 
the Madelung energy difference. Kriessman and 
Harrison [41 treated the problem of cation 
distributions of the system MgtNil_~F%O 4. They 
found out that O 1 decreases rapidly to zero 

as the solid solution approaches the NiF%O4 
composition, which is an almost inverse and 
temperature-insensitive spinel [19]. The same 
trend for O1 was found earlier [1 ] by the same 
authors on Mg~Mnl_~Fe20~ spinels, as t--,  0. 

In our opinion, all the reported facts can be 
summarised as follows: 
(i) Madelung energy differences depend strongly 
on the distribution when the conditions calcula- 
ted by Verwey, de Boer and van Santen hold, 
which implies also that the cationic states must 
be mainly spherically symmetric. 
(ii) When crystal-field energies preponderate over 
purely electrostatic ones, as for Ni z+, Mn a+, 
etc, in spinels, the distribution dependence of the 
energy tends to disappear, owing to the strong 
cation.-lattice interactions. 
(iii) When Madelung energy differences are small 
owing either to small tetrahedral charge varia: 
tion or to the favourable magnitude of the u- 
value or to both, other contributions to the 
energy differences must be taken into account 
to explain the temperature-dependence of the 
distribution. The cation distribution problem in 
magnesioferrite seems to fall within this case. 

On the other hand, one is induced to accept 
the distribution dependence of the energy, owing 
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to the linear behaviour of  the numerator  of  the 
exponent versus x in equation 11, as was shown 
in the work of reference 5. In fig. 2 the values of 
the total (thermal and non-thermal) energy of 
Mg ~+ ions calculated by means of equation 10 
are plotted versus x values as derived f rom Mozzi 
and Paladino's X-ray and magnetic measure- 
ments. The latter are derived with the aid of  the 
formula 

x = [ n B  q- 5 (3 - -  1)]/10 3 (12) 

where nB is the saturation magnetisation in Bohr 
magnetons per molecule extrapolated to 0 ~ K. In 
the same figure, the theoretical total energy as 
derived with the adopted values of O~o), OE (2) 
and AEis plotted. 
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Figure 2 Total (.electrostatic + thermal) energy per Mg-ion 
in Mg~.06Fe~.9403.~> versus fractional tetrahedral Mg, x. 
Continuous l ine: theoretical curve, as derived from this 
work; 0 :  derived from experimental magnetic measure- 
ments (Mozzi and Paladino [5]) through equation 11; [ ] :  
derived from experimental X-ray measurements (Mozzi 
and Paladino [5]) through equation 11. 

We would like to attract the attention of the 
reader to the linearity of the curve in the range 
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Figure 3 Theoretical magnetisation curve of the system 
F%O4/MgFe204 for different quench temperatures as 
derived from this work. 

of experimental interest. It  could seem at first 
sight that the total energy of Mg ~+ ions depends 
directly on the distribution, but equation 10 
demonstrates that this dependence occurs via the 
temperature. The steep increase of  the theoretical 
curve in the vicinity of x = 0 is not physically 
explained, at present. 

5. T h e  Sys tem F e 3 0 , / M g F e 2 0 ,  
As a natural derivation of the previous treatment 
and by means of equations 4' and 10, the mag- 
netisation versus composition for different 
quench temperatures is derived as: 

n~ = 4.2(1 --  t) -]- 10 x - -  2.2 y (13) 

In fig. 3 the values ofnB extrapolated to 0 ~ K for 
the system MgtFel_~Fe~+O4 are plotted as a 
function of t for several equilibrium cation 
temperatures. I t  can be seen that owing to the 
insensitivity of F%O~ to thermal treatment, nB is 
less and less dependent on temperature of equi- 
librium as the composition approaches that of 
magnetite. 
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6. Conclusions 
A ve ry  s imple  m o d e l  seems to  exp la in  sat isfac-  
to r i ly  the  e x p e r i m e n t a l  facts  a b o u t  t e m p e r a t u r e -  
d e p e n d e n c e  o f  ca t i on  d i s t r i bu t ion  in m a g n e s i o -  
ferr i te .  

T h e  a d d i t i o n  o f  t h e r m a l  c o n t r i b u t i o n s  to  the  
energy  seems necessa ry  w h e n  o t h e r  c a t i on i c  
energ ies  are  small .  

A c r i t i c i sm o f  the  m e t h o d  can  be  m a d e  on  the  
basis o f  the  diff iculty o f  ach i ev ing  ca t ion  t h e r m a l  
energ ies  re fe r red  to  d i f ferent  sublat t ices ,  as 
D e b y e  or  E ins te in  cha rac te r i s t i c  t e m p e r a t u r e s  
are  d e t e r m i n e d  on  b u l k  c o m p o s i t i o n s .  I t  is fe l t  
none the le s s  tha t  the  p resen t  s tudy  can  ind ica te  a 
r e a s o n a b l y  d i rec t  w a y  to d is t inguish  be tween  the  
ene rgy  c o n t r i b u t i o n s  respons ib le  fo r  ca t ion  
d is t r ibu t ions .  
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